Customer Segmentation टूल
PRORFM analysis, K-Means clustering और behavioral data use करके customers segment करो। High-value groups identify करो, churn predict करो और targeted acquisition strategies build करो!
इस स्किल का उपयोग कैसे करें
स्किल कॉपी करें ऊपर के बटन का उपयोग करें
अपने AI असिस्टेंट में पेस्ट करें (Claude, ChatGPT, आदि)
नीचे अपनी जानकारी भरें (वैकल्पिक) और अपने प्रॉम्प्ट में शामिल करने के लिए कॉपी करें
भेजें और चैट शुरू करें अपने AI के साथ
सुझाया गया कस्टमाइज़ेशन
| विवरण | डिफ़ॉल्ट | आपका मान |
|---|---|---|
| Days to look back for calculating recency score (90 for fast-moving retail, 730 for B2B) | 365 | |
| Number of clusters for K-Means algorithm (determine via Elbow Method, typically 3-8) | 5 | |
| Percentile threshold above which customers are considered high monetary value | 75 | |
| Days of inactivity defining a customer as churned (30 for SaaS, 365 for annual subscription) | 180 | |
| Minimum purchase frequency to classify as frequent buyer (varies by industry) | 5 | |
| Target Customer Acquisition Cost payback period in months | 12 |
शोध स्रोत
यह स्किल इन विश्वसनीय स्रोतों से शोध का उपयोग करके बनाया गया था:
- Comarch Customer Segmentation Guide Comprehensive 7-step segmentation strategy covering geographic, demographic, psychographic, behavioral, needs-based, and value-based approaches
- 8 Proven Customer Segmentation Frameworks Details 8 frameworks including 4A Model, 3C Framework, STP, RFM Analysis, 5W Framework, Persona Framework
- How to Perform Customer Segmentation: 5-Step Strategy Step-by-step implementation guide with real examples of demographic, geographic, psychographic, and behavioral approaches
- Ultimate Framework for Segmenting Customers Practical framework covering behavioral, psychographic, RFM segmentation across CRM, success, sales, and product teams
- Customer Segmentation in Python with Machine Learning Hands-on Python tutorial using K-Means clustering with EDA, feature scaling, and segment interpretation
- Customer Segmentation via Cluster Analysis Technical guide on K-Means, hierarchical, and density-based clustering methods
- Customer Segmentation Using K-Means Clustering Project-based tutorial covering EDA, feature transformation, elbow method, and cluster interpretation
- Machine Learning for Customer Segmentation in Retail Academic overview of ML techniques including clustering, classification algorithms, and retail case studies
- AI-driven Customer Segmentation in E-commerce Framework covering clustering algorithms, data integration, implementation case studies, and ROI measurement
- RFM Analysis Method for Customer Segmentation Detailed guide on Recency-Frequency-Monetary analysis and segment interpretation