Wellness Habit बिल्डर
PROSleep, exercise, nutrition और mental health पर personalized habit stacks design करो। Sustainable behavior change के लिए चार wellness domains integrate करने वाला AI-driven system!
इस स्किल का उपयोग कैसे करें
स्किल कॉपी करें ऊपर के बटन का उपयोग करें
अपने AI असिस्टेंट में पेस्ट करें (Claude, ChatGPT, आदि)
नीचे अपनी जानकारी भरें (वैकल्पिक) और अपने प्रॉम्प्ट में शामिल करने के लिए कॉपी करें
भेजें और चैट शुरू करें अपने AI के साथ
सुझाया गया कस्टमाइज़ेशन
| विवरण | डिफ़ॉल्ट | आपका मान |
|---|---|---|
| The main health outcome the user wants to achieve | improve sleep quality | |
| Existing daily routines that can serve as triggers | morning coffee, evening dinner, brushing teeth | |
| Minutes available for new habits | 15 | |
| Health tracking device if any | Apple Watch | |
| Relevant health considerations | none | |
| Preferred feedback modality | visual |
शोध स्रोत
यह स्किल इन विश्वसनीय स्रोतों से शोध का उपयोग करके बनाया गया था:
- Atomic Habits: An Easy & Proven Way to Build Good Habits and Break Bad Ones James Clear's foundational framework on identity-based habits, habit stacking, and the 3 Rs of habit change
- Tiny Habits: The Small Changes That Change Everything (BJ Fogg) Fogg Behavior Model (B = M + A + T) showing how motivation + ability + trigger enable behavior
- Digital Behavior Change Intervention Designs for Habit Formation: Systematic Review (JMIR, 2024) Meta-analysis of 41 DBCIs showing most effective techniques: self-monitoring, goal setting, prompts/cues
- The Neuroscience of Habit Formation (ScienceExcel, 2024) Explores basal ganglia circuits, neuroplasticity, and how meditation, sleep, sunlight, and exercise shape neural landscape
- Context Stability in Habit Building Increases Automaticity and Goal Attainment (PLoS ONE, 2022) Demonstrates context (time, location, preceding action) has ongoing effect on habit execution
- What can machine learning teach us about habit formation? Evidence from exercise and hygiene (PNAS, 2023) ML models reveal which context variables predict behavior; shows interventions should target individuals' specific context sensitivities
- Effects of habit formation interventions on physical activity habit strength: meta-analysis (IJBNPA, 2023) Meta-analysis of 10 studies on PA habit interventions; identifies key BCTs: self-monitoring, cue planning, habit reversal
- Self-Efficacy in Habit Building: How General and Habit-Specific Self-Efficacy Influence Behavioral Automatization (Front. Psychol., 2021) Shows lagged habit-specific self-efficacy predicts automaticity; creates positive feedback loop
- The Shape of Mobile Health: A Systematic Review of Health Visualization on Mobile Devices (2024) Reviews 56 mHealth studies; shows bar/line charts most popular for health data; highlights personalization critical
- Evaluating the Acceptability and Utility of a Personalized Wellness App (Aspire2B) Using AI-Enabled Digital Biomarkers (JMIR Formative Research, 2025) Recent study on AI-powered personalized wellness app showing behavior-change-strategy integration boosts adherence