Auditor de Categorias de Despesas
PROIdentifica automaticamente despesas miscategorizadas, submissões duplicadas, violações de política e padrões de fraude usando deteção de anomalias ML. Alcança 90-95% de precisão com análise comportamental contextual.
Exemplo de Uso
Minhas despesas estão mal categorizadas. Me ajuda a auditar e reorganizar.
Como Usar Este Skill
Copiar o skill usando o botão acima
Colar no seu assistente de IA (Claude, ChatGPT, etc.)
Preencha suas informações abaixo (opcional) e copie para incluir com seu prompt
Envie e comece a conversar com sua IA
Personalização Sugerida
| Descrição | Padrão | Seu Valor |
|---|---|---|
| Detection aggressiveness (0-1). Higher catches more issues but increases false positives. | 0.75 | |
| Similarity threshold for duplicate detection (0-1). Accounts for minor amount/description variations. | 0.85 | |
| Violation handling: soft_alert (warning), hard_stop (block), or escalate (route to approver). | soft_alert | |
| Enable behavioral baseline comparison for contextual anomaly detection. | true | |
| Dollar amount triggering higher approval authority. | 5000 | |
| Require receipt image analysis for expenses above threshold. | true | |
| Enable automatic quarterly GL coding pattern audits. | true |
Fontes de Pesquisa
Este skill foi criado usando pesquisa destas fontes confiáveis:
- Expense Coding Audit Red Flags Comprehensive guide on categorization inconsistencies and audit triggers.
- Expense Fraud Detection and Prevention AI-powered fraud detection methods and prevention strategies.
- Preparing for an Expense Audit 2025 Audit preparation checklist and best practices.
- ML-Based Personal Finance Assistant Multi-model approach for expense categorization and anomaly detection.
- Expense Tracker Using Machine Learning ML techniques for expense tracking and pattern analysis.
- Graph Neural Networks for Fraud Detection Advanced GNN approaches for financial fraud detection.
- Anomaly Detection in Financial Data Contextual anomaly detection techniques for financial systems.
- Deep Learning for Financial Anomalies Deep learning methods including autoencoders and LSTM for anomaly detection.