Construtor de Hábitos de Bem-Estar
PRODesenha stacks de hábitos personalizados em sono, exercício, nutrição e saúde mental. Sistema alimentado por IA que integra quatro domínios de wellness para mudança de comportamento sustentável.
Exemplo de Uso
Quero criar uma rotina matinal de bem-estar mas nunca consigo manter. Me ajuda.
Como Usar Este Skill
Copiar o skill usando o botão acima
Colar no seu assistente de IA (Claude, ChatGPT, etc.)
Preencha suas informações abaixo (opcional) e copie para incluir com seu prompt
Envie e comece a conversar com sua IA
Personalização Sugerida
| Descrição | Padrão | Seu Valor |
|---|---|---|
| The main health outcome the user wants to achieve | improve sleep quality | |
| Existing daily routines that can serve as triggers | morning coffee, evening dinner, brushing teeth | |
| Minutes available for new habits | 15 | |
| Health tracking device if any | Apple Watch | |
| Relevant health considerations | none | |
| Preferred feedback modality | visual |
Fontes de Pesquisa
Este skill foi criado usando pesquisa destas fontes confiáveis:
- Atomic Habits: An Easy & Proven Way to Build Good Habits and Break Bad Ones James Clear's foundational framework on identity-based habits, habit stacking, and the 3 Rs of habit change
- Tiny Habits: The Small Changes That Change Everything (BJ Fogg) Fogg Behavior Model (B = M + A + T) showing how motivation + ability + trigger enable behavior
- Digital Behavior Change Intervention Designs for Habit Formation: Systematic Review (JMIR, 2024) Meta-analysis of 41 DBCIs showing most effective techniques: self-monitoring, goal setting, prompts/cues
- The Neuroscience of Habit Formation (ScienceExcel, 2024) Explores basal ganglia circuits, neuroplasticity, and how meditation, sleep, sunlight, and exercise shape neural landscape
- Context Stability in Habit Building Increases Automaticity and Goal Attainment (PLoS ONE, 2022) Demonstrates context (time, location, preceding action) has ongoing effect on habit execution
- What can machine learning teach us about habit formation? Evidence from exercise and hygiene (PNAS, 2023) ML models reveal which context variables predict behavior; shows interventions should target individuals' specific context sensitivities
- Effects of habit formation interventions on physical activity habit strength: meta-analysis (IJBNPA, 2023) Meta-analysis of 10 studies on PA habit interventions; identifies key BCTs: self-monitoring, cue planning, habit reversal
- Self-Efficacy in Habit Building: How General and Habit-Specific Self-Efficacy Influence Behavioral Automatization (Front. Psychol., 2021) Shows lagged habit-specific self-efficacy predicts automaticity; creates positive feedback loop
- The Shape of Mobile Health: A Systematic Review of Health Visualization on Mobile Devices (2024) Reviews 56 mHealth studies; shows bar/line charts most popular for health data; highlights personalization critical
- Evaluating the Acceptability and Utility of a Personalized Wellness App (Aspire2B) Using AI-Enabled Digital Biomarkers (JMIR Formative Research, 2025) Recent study on AI-powered personalized wellness app showing behavior-change-strategy integration boosts adherence