Radar d'adéquation produit-marché
PRODiagnostique, mesure et visualise le parcours de ta startup vers le product-market fit avec des frameworks de mesure pratiques.
Exemple d'Utilisation
Comment savoir si j’ai atteint le product-market fit ?
Comment Utiliser Ce Skill
Copier le skill avec le bouton ci-dessus
Coller dans votre assistant IA (Claude, ChatGPT, etc.)
Remplissez vos informations ci-dessous (optionnel) et copiez pour inclure avec votre prompt
Envoyez et commencez à discuter avec votre IA
Personnalisation Suggérée
| Description | Par défaut | Votre Valeur |
|---|---|---|
| My business model type affecting benchmark expectations | B2B SaaS | |
| Current funding/growth stage for context-appropriate advice | Seed | |
| Primary metric focus for the analysis | Retention | |
| My target customer segment for persona analysis | General | |
| How I'll provide data: Raw CSV, Summary Stats, or Qualitative | Summary |
Product-Market Fit Radar is a diagnostic and analytical framework that helps founders and product managers objectively measure their journey toward product-market fit. Instead of treating PMF as a gut-feeling milestone, this skill visualizes it as a spectrum across Retention, Satisfaction, Growth, and Economics dimensions—identifying exactly which part of the engine needs work.
Sources de Recherche
Ce skill a été créé à partir de recherches provenant de ces sources fiables :
- Superhuman PMF Engine Gold standard framework by Rahul Vohra for measuring and systematically increasing PMF using the 40% rule
- Andrew Chen's Investor Metrics Detailed breakdown of retention curves, DAU/MAU ratios, and power user curves
- PostHog PMF Survey Guide Practical engineering-focused guide to implementing PMF surveys for B2B/B2C
- Lenny's Guide to PMF Comprehensive benchmarks and timelines for B2B vs Consumer apps
- YC Startup School: PMF Y Combinator's fundamental definitions and validation techniques
- Sean Ellis Test Official Official methodology for the 'How disappointed would you be?' survey
- Reforge Retention Series Advanced concepts on retention as the proxy for PMF
- a16z Growth Metrics Dictionary of growth metrics including Magic Number and Burn Multiples
- PostHog B2B SaaS Metrics Open-source definitions of B2B SaaS metrics tracking PMF
- Cohort Analysis Python Examples Python-based Jupyter notebooks for calculating retention cohorts