Costruttore Abitudini Benessere
PROCostruisci abitudini di benessere che durano - piccoli passi, consistenza e progressi. Alla grande per stare bene!
Esempio di Utilizzo
Aiutami a costruire una routine mattutina di benessere partendo da zero.
Come Usare Questo Skill
Copia lo skill usando il pulsante sopra
Incolla nel tuo assistente AI (Claude, ChatGPT, ecc.)
Compila le tue informazioni sotto (opzionale) e copia per includere nel tuo prompt
Invia e inizia a chattare con la tua AI
Personalizzazione Suggerita
| Descrizione | Predefinito | Il Tuo Valore |
|---|---|---|
| L'obiettivo di salute principale che l'utente vuole raggiungere | improve sleep quality | |
| Routine quotidiane esistenti che possono servire da trigger | morning coffee, evening dinner, brushing teeth | |
| Minuti disponibili per nuove abitudini | 15 | |
| Dispositivo tracciamento salute se presente | Apple Watch | |
| Considerazioni di salute rilevanti | none | |
| Modalità feedback preferita | visual |
Fonti di Ricerca
Questo skill è stato creato utilizzando ricerche da queste fonti autorevoli:
- Atomic Habits: An Easy & Proven Way to Build Good Habits and Break Bad Ones James Clear's foundational framework on identity-based habits, habit stacking, and the 3 Rs of habit change
- Tiny Habits: The Small Changes That Change Everything (BJ Fogg) Fogg Behavior Model (B = M + A + T) showing how motivation + ability + trigger enable behavior
- Digital Behavior Change Intervention Designs for Habit Formation: Systematic Review (JMIR, 2024) Meta-analysis of 41 DBCIs showing most effective techniques: self-monitoring, goal setting, prompts/cues
- The Neuroscience of Habit Formation (ScienceExcel, 2024) Explores basal ganglia circuits, neuroplasticity, and how meditation, sleep, sunlight, and exercise shape neural landscape
- Context Stability in Habit Building Increases Automaticity and Goal Attainment (PLoS ONE, 2022) Demonstrates context (time, location, preceding action) has ongoing effect on habit execution
- What can machine learning teach us about habit formation? Evidence from exercise and hygiene (PNAS, 2023) ML models reveal which context variables predict behavior; shows interventions should target individuals' specific context sensitivities
- Effects of habit formation interventions on physical activity habit strength: meta-analysis (IJBNPA, 2023) Meta-analysis of 10 studies on PA habit interventions; identifies key BCTs: self-monitoring, cue planning, habit reversal
- Self-Efficacy in Habit Building: How General and Habit-Specific Self-Efficacy Influence Behavioral Automatization (Front. Psychol., 2021) Shows lagged habit-specific self-efficacy predicts automaticity; creates positive feedback loop
- The Shape of Mobile Health: A Systematic Review of Health Visualization on Mobile Devices (2024) Reviews 56 mHealth studies; shows bar/line charts most popular for health data; highlights personalization critical
- Evaluating the Acceptability and Utility of a Personalized Wellness App (Aspire2B) Using AI-Enabled Digital Biomarkers (JMIR Formative Research, 2025) Recent study on AI-powered personalized wellness app showing behavior-change-strategy integration boosts adherence