Analytics „Na und?“-Methode
PROVerwandle rohe Metriken in handlungsorientierte Business-Insights mit der „So What?“-Methodik, um die Lücke zwischen Daten und Entscheidungen zu überbrücken.
Anwendungsbeispiel
Ich hab jede Menge Analytics-Daten, aber weiß nicht was ich damit anfangen soll. Zeig mir die ‘So What?’ Methode.
So verwendest du diesen Skill
Skill kopieren mit dem Button oben
In deinen KI-Assistenten einfügen (Claude, ChatGPT, etc.)
Deine Eingaben unten ausfüllen (optional) und kopieren, um sie mit deinem Prompt einzufügen
Absenden und mit der KI chatten beginnen
Anpassungsvorschläge
| Beschreibung | Standard | Dein Wert |
|---|---|---|
| Percentage change that triggers investigation (e.g., any metric moving ±20% gets root cause analysis) | 20% | |
| How many levels deep to segment data (e.g., source → device → browser) | 3 | |
| Historical context to examine when analyzing metric changes | 30 days | |
| Communication style: 'technical' (methodology focus), 'moderate' (findings focus), 'executive' (business impact only) | moderate | |
| Statistical significance required before claiming a finding is real | 95% | |
| Recommendation priority: 'critical' (act immediately), 'medium' (schedule within sprint), 'low' (consider for next cycle) | medium |
Forschungsquellen
Dieser Skill wurde auf Basis von Forschung aus diesen maßgeblichen Quellen erstellt:
- Consumer Insights: 'So What' & 'Now What' Data for Advantage Comprehensive article defining 'So What' as meaningful interpretation and 'Now What' as actionable strategies
- Data Interpretation: The Ultimate Guide to Turning Data Into Insights Differentiates data analysis (the 'how') from data interpretation (the 'so what?'); structured methodology
- What is website analytics? Understand customer journeys Adobe's explanation of why metrics alone fall short without interpretation and context
- What Are Website Analytics? 8 Tips for Better Website Metrics Distinguishes between metrics (answer 'what happened?') and analytics (answer 'why?' and 'what should we do?')
- Data storytelling: Adding meaning to metrics How to merge data science, visualization, and narrative to translate raw metrics into organizational impact
- How to Use Analytics to Support Data Storytelling Structure narratives around data with clear characters, setting, conflict, and resolution
- Turn Data into Actionable Insights: A Practical Guide Four-stage framework: data preparation, pattern discovery, findings communication, and action translation
- How To Fix a High Bounce Rate Without Redoing Your Site Practical bounce rate interpretation: diagnosing root causes (speed, messaging, content) and implementing targeted fixes
- Metrics Dashboards: Everything You Need to Know How metrics dashboards transform numerical data into visual insights that drive real-time decision-making
- How to answer the 'so what' questions in an analysis Community perspective from experienced data scientists on addressing 'So What?' gaps and staying business-focused