Kundensegmentierung
PROSegmentiere Kunden mit RFM-Analyse, K-Means-Clustering und Verhaltensdaten, um High-Value-Gruppen zu identifizieren, Churn zu prognostizieren und zielgerichtete Akquise-Strategien aufzubauen.
Anwendungsbeispiel
Segmentiere meine Kundenbasis mit RFM-Analyse und hilf mir, unterschiedliche Marketing-Strategien pro Segment zu entwickeln.
So verwendest du diesen Skill
Skill kopieren mit dem Button oben
In deinen KI-Assistenten einfügen (Claude, ChatGPT, etc.)
Deine Eingaben unten ausfüllen (optional) und kopieren, um sie mit deinem Prompt einzufügen
Absenden und mit der KI chatten beginnen
Anpassungsvorschläge
| Beschreibung | Standard | Dein Wert |
|---|---|---|
| Days to look back for calculating recency score (90 for fast-moving retail, 730 for B2B) | 365 | |
| Number of clusters for K-Means algorithm (determine via Elbow Method, typically 3-8) | 5 | |
| Percentile threshold above which customers are considered high monetary value | 75 | |
| Days of inactivity defining a customer as churned (30 for SaaS, 365 for annual subscription) | 180 | |
| Minimum purchase frequency to classify as frequent buyer (varies by industry) | 5 | |
| Target Customer Acquisition Cost payback period in months | 12 |
Forschungsquellen
Dieser Skill wurde auf Basis von Forschung aus diesen maßgeblichen Quellen erstellt:
- Comarch Customer Segmentation Guide Comprehensive 7-step segmentation strategy covering geographic, demographic, psychographic, behavioral, needs-based, and value-based approaches
- 8 Proven Customer Segmentation Frameworks Details 8 frameworks including 4A Model, 3C Framework, STP, RFM Analysis, 5W Framework, Persona Framework
- How to Perform Customer Segmentation: 5-Step Strategy Step-by-step implementation guide with real examples of demographic, geographic, psychographic, and behavioral approaches
- Ultimate Framework for Segmenting Customers Practical framework covering behavioral, psychographic, RFM segmentation across CRM, success, sales, and product teams
- Customer Segmentation in Python with Machine Learning Hands-on Python tutorial using K-Means clustering with EDA, feature scaling, and segment interpretation
- Customer Segmentation via Cluster Analysis Technical guide on K-Means, hierarchical, and density-based clustering methods
- Customer Segmentation Using K-Means Clustering Project-based tutorial covering EDA, feature transformation, elbow method, and cluster interpretation
- Machine Learning for Customer Segmentation in Retail Academic overview of ML techniques including clustering, classification algorithms, and retail case studies
- AI-driven Customer Segmentation in E-commerce Framework covering clustering algorithms, data integration, implementation case studies, and ROI measurement
- RFM Analysis Method for Customer Segmentation Detailed guide on Recency-Frequency-Monetary analysis and segment interpretation