Designer monitoring et alertes
PROConçois un système de monitoring et alerting efficace sans alert fatigue. Les bonnes alertes au bon moment.
Exemple d'Utilisation
Conçois une stratégie d’alerting pour notre application avec SLOs et SLIs.
Comment Utiliser Ce Skill
Copier le skill avec le bouton ci-dessus
Coller dans votre assistant IA (Claude, ChatGPT, etc.)
Remplissez vos informations ci-dessous (optionnel) et copiez pour inclure avec votre prompt
Envoyez et commencez à discuter avec votre IA
Personnalisation Suggérée
| Description | Par défaut | Votre Valeur |
|---|---|---|
| Target SLO percentage (e.g., 99.95 for 99.95% availability) | 99.95 | |
| Time window for SLO evaluation (e.g., 30d, 7d, 1h) | 30d | |
| Burn rate multiplier for critical/page alerts | 14.4 | |
| Burn rate multiplier for warning/ticket alerts | 1.0 | |
| Target monitoring platform (prometheus, datadog, dynatrace, grafana) | prometheus | |
| Distributed tracing backend (jaeger, zipkin, tempo, datadog) | jaeger |
Design comprehensive observability systems that provide real-time visibility into system health, performance, and reliability. Create SLO-based alerting strategies with multi-burn-rate rules, reduce alert fatigue through intelligent optimization, and integrate monitoring with incident response workflows for faster resolution.
Sources de Recherche
Ce skill a été créé à partir de recherches provenant de ces sources fiables :
- From Monitoring to Observability: A Paradigm Shift in IT Operations Comprehensive guide on the shift from traditional monitoring to observability covering logs, metrics, and traces
- Ways to Alert on Significant Events (Google SRE Workbook) Official Google approach to multi-burn-rate and multi-window SLO-based alerting strategies
- Designing Tomorrow's Observability: Software Architect's Guide Deep dive into observability architecture, tool selection, and implementation patterns
- Monitoring Distributed Cloud-Based Microservices Framework for monitoring cloud microservices covering APM, infrastructure health, and log aggregation
- Intelligent Alerting with AI-Powered Anomaly Detection Modern ML approaches to noise reduction including predictive alerting and Holt-Winters forecasting
- SLO Monitoring Guide - Measuring Service Reliability Practical guide on SLO setup, SLI definition, and actionable threshold configuration
- How We Use Sloth for SLO Monitoring with Prometheus Real-world implementation of multi-window, multi-burn-rate alerting at Mattermost
- Observability Best Practices - Embrace.io Best practices including actionable alerts, cross-department collaboration, and data quality