제품-Market Fit Radar
PRO제품-Market Fit Radar 고민이라면 이거 써봐! 확실하게 도와줌. 갓생 시작!
사용 예시
제품-Market Fit Radar 시작하고 싶은데 어떻게 해야 할지 모르겠어요. 도와주세요!
이 스킬 사용법
스킬 복사 위의 버튼 사용
AI 어시스턴트에 붙여넣기 (Claude, ChatGPT 등)
아래에 정보 입력 (선택사항) 프롬프트에 포함할 내용 복사
전송하고 대화 시작 AI와 함께
추천 맞춤 설정
| 설명 | 기본값 | 내 값 |
|---|---|---|
| My business model type affecting benchmark expectations | B2B SaaS | |
| Current funding/growth stage for context-appropriate advice | Seed | |
| Primary metric focus for the analysis | Retention | |
| My target customer segment for persona analysis | General | |
| How I'll provide data: Raw CSV, Summary Stats, or Qualitative | Summary |
Product-Market Fit Radar is a diagnostic and analytical framework that helps founders and product managers objectively measure their journey toward product-market fit. Instead of treating PMF as a gut-feeling milestone, this skill visualizes it as a spectrum across Retention, Satisfaction, Growth, and Economics dimensions—identifying exactly which part of the engine needs work.
연구 출처
이 스킬은 다음 신뢰할 수 있는 출처의 연구를 바탕으로 만들어졌습니다:
- Superhuman PMF Engine Gold standard framework by Rahul Vohra for measuring and systematically increasing PMF using the 40% rule
- Andrew Chen's Investor Metrics Detailed breakdown of retention curves, DAU/MAU ratios, and power user curves
- PostHog PMF Survey Guide Practical engineering-focused guide to implementing PMF surveys for B2B/B2C
- Lenny's Guide to PMF Comprehensive benchmarks and timelines for B2B vs Consumer apps
- YC Startup School: PMF Y Combinator's fundamental definitions and validation techniques
- Sean Ellis Test Official Official methodology for the 'How disappointed would you be?' survey
- Reforge Retention Series Advanced concepts on retention as the proxy for PMF
- a16z Growth Metrics Dictionary of growth metrics including Magic Number and Burn Multiples
- PostHog B2B SaaS Metrics Open-source definitions of B2B SaaS metrics tracking PMF
- Cohort Analysis Python Examples Python-based Jupyter notebooks for calculating retention cohorts